Chaos in a Three-Dimensional Volterra-gause Model of Predator-prey Type

نویسندگان

  • Jean-Marc Ginoux
  • Bruno Rossetto
  • Jean-Louis Jamet
چکیده

The aim of this paper is to present results concerning a three-dimensional model including a prey, a predator and top-predator, which we have named the Volterra–Gause model because it combines the original model of V. Volterra incorporating a logisitic limitation of the P. F. Verhulst type on growth of the prey and a limitation of the G. F. Gause type on the intensity of predation of the predator on the prey and of the top-predator on the predator. This study highlights that this model has several Hopf bifurcations and a period-doubling cascade generating a snail shell-shaped chaotic attractor. With the aim of facilitating the choice of the simplest and most consistent model a comparison is established between this model and the so-called Rosenzweig–MacArthur and Hastings– Powell models. Many resemblances and differences are highlighted and could be used by the modellers. The exact values of the parameters of the Hopf bifurcation are provided for each model as well as the values of the parameters making it possible to carry out the transition from a typical phase portrait characterizing one model to another (Rosenzweig–MacArthur to Hastings–Powell and vice versa). The equations of the Volterra–Gause model cannot be derived from those of the other models, but this study shows similarities between the three models. In cases in which the toppredator has no effect on the predator and consequently on the prey, the models can be reduced to two dimensions. Under certain conditions, these models present slow–fast dynamics and their attractors are lying on a slow manifold surface, the equation of which is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Gause predator-prey model with a refuge: a fresh look at the history.

This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical p...

متن کامل

Global Stability and Hopf Bifurcation for Gause-Type Predator-Prey System

A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for predator-prey system 2005 , to give the global stability of the equilibrium. Secondly, we analyze the stability...

متن کامل

The Lotka-Volterra Predator-Prey Equations

One may find out the application‎ ‎of mathematics in the areas of ecology‎, ‎biology‎, ‎environmental‎ ‎sciences etc‎. ‎Mathematics is particulary used in the problem of‎ ‎predator-prey known as lotka-Volterra predator-prey equations.‎ ‎Indeed‎, ‎differential equations is employed very much in many areas‎ ‎of other sciences‎. ‎However‎, ‎most of natural problems involve some‎ ‎unknown functions...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

The Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model

   Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic.    In the present paper, some predator-prey models in which two ecologically inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005