Chaos in a Three-Dimensional Volterra-gause Model of Predator-prey Type
نویسندگان
چکیده
The aim of this paper is to present results concerning a three-dimensional model including a prey, a predator and top-predator, which we have named the Volterra–Gause model because it combines the original model of V. Volterra incorporating a logisitic limitation of the P. F. Verhulst type on growth of the prey and a limitation of the G. F. Gause type on the intensity of predation of the predator on the prey and of the top-predator on the predator. This study highlights that this model has several Hopf bifurcations and a period-doubling cascade generating a snail shell-shaped chaotic attractor. With the aim of facilitating the choice of the simplest and most consistent model a comparison is established between this model and the so-called Rosenzweig–MacArthur and Hastings– Powell models. Many resemblances and differences are highlighted and could be used by the modellers. The exact values of the parameters of the Hopf bifurcation are provided for each model as well as the values of the parameters making it possible to carry out the transition from a typical phase portrait characterizing one model to another (Rosenzweig–MacArthur to Hastings–Powell and vice versa). The equations of the Volterra–Gause model cannot be derived from those of the other models, but this study shows similarities between the three models. In cases in which the toppredator has no effect on the predator and consequently on the prey, the models can be reduced to two dimensions. Under certain conditions, these models present slow–fast dynamics and their attractors are lying on a slow manifold surface, the equation of which is given.
منابع مشابه
On the Gause predator-prey model with a refuge: a fresh look at the history.
This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical p...
متن کاملGlobal Stability and Hopf Bifurcation for Gause-Type Predator-Prey System
A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for predator-prey system 2005 , to give the global stability of the equilibrium. Secondly, we analyze the stability...
متن کاملThe Lotka-Volterra Predator-Prey Equations
One may find out the application of mathematics in the areas of ecology, biology, environmental sciences etc. Mathematics is particulary used in the problem of predator-prey known as lotka-Volterra predator-prey equations. Indeed, differential equations is employed very much in many areas of other sciences. However, most of natural problems involve some unknown functions...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملThe Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model
Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic. In the present paper, some predator-prey models in which two ecologically inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 15 شماره
صفحات -
تاریخ انتشار 2005